[1] ZHOU X, SUN S, CHEN Y, et al. Pulsed Frequency Modulated Ultrasound Promotes Therapeutic Effects of Osteoporosis Induced by Ovarian Failure in Mice [J]. Ultrasonics, 2023: 106973.
[2] ZHANG C, JIANG X, HE J, et al. Spatiotemporal Acoustic Communication by a Single Sensor via Rotational Doppler Effect [J]. Advanced Science, 2023: 2206619.
[3] CHEN H, LING F, ZHU W, et al. Waveform inversion for wavenumber extraction and waveguide characterization using ultrasonic Lamb waves [J]. Measurement, 2023, 207: 112360.
[4] BI D, SHI L, LIU C, et al. Ultrasonic Through-Transmission Measurements of Human Musculoskeletal and Fat Properties [J]. Ultrasound Med Biol, 2023, 49(1): 347-355.
[5] BI D, LIU C, DAI Z, et al. Human Bone Loss Assessed by High-Resolution Peripheral Quantitative Computed Tomography and Ultrasonic Transmission Techniques [J]. Microgravity Science and Technology, 2023, 35(2): 12.
[6] ZHAO H L, ZHANG C X, HE J J, et al. Nondestructive Evaluation of Special Defects Based on Ultrasound Metasurface [J]. Frontiers in Materials, 2022, 8: 552.
[7] TRAN T, LI B, LI Y, et al. Estimating dispersion relations of ultrasonic guided waves in bone using a modified matrix pencil algorithm [J]. The Journal of the Acoustical Society of America, 2022, 152(4): A239-A239.
[8] LI Y, LIN Y, LI B, et al. Experimental study on bone phantom imaging using ultrasound velocity inversion and reverse time migration; proceedings of the 2022 IEEE International Ultrasonics Symposium (IUS), 2022 [C]. IEEE.
[9] LI B, ZHOU T, LIU X, et al. A Photoacoustic Spectrum Feature Extraction Method to Characterize the Hydroxyapatite Degradation Process in Cortical Bone; proceedings of the 2022 IEEE International Ultrasonics Symposium (IUS), 2022 [C]. IEEE.
[10] LI B Y, LIU C C, LIU X, et al. Amplitude modulation excitation for cancellous bone evaluation using a portable ultrasonic backscatter instrumentation [J]. Chinese Physics B, 2022, 31(11): 114303.
[11] HE J J, ZHOU Z L, ZHANG C X, et al. Ultrasparse and omnidirectional acoustic ventilated meta-barrier [J]. Applied Physics Letters, 2022, 120(19): 191701.
[12] CHEN H, XU K, LIU X, et al. Influence of optical transmissivity on signal characteristics of photoacoustic guided waves in long cortical bone [J]. Ultrasonics, 2022, 126: 106816.
[13] SUN S, TANG L, ZHAO T, et al. Longitudinal effects of low-intensity pulsed ultrasound on osteoporosis and osteoporotic bone defect in ovariectomized rats [J]. Ultrasonics, 2021, 113: 106360.
[14] LIU D W, LI B Y, BI D S, et al. Assessment of cortical bone fatigue using coded nonlinear ultrasound [J]. Chinese Physics B, 2021, 30(9): 094301.
[15] LI Y F, SHI Q Z, LI Y, et al. High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion [J]. Chinese Physics B, 2021, 30(1): 014302.
[16] LI B, LIU C, LI Y, et al. An Amplitude Modulation Ultrasonic Backscatter Method for Estimation Characterization of Cancellous Bones; proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), 2021 [C]. IEEE.
[17] BI D, DAI Z, LIU D, et al. Ultrasonic Backscatter Measurements of Human Cortical and Trabecular Bone Densities in a Head-Down Bed-Rest Study [J]. Ultrasound Med Biol, 2021, 47(8): 2404-2415.
[18] LIU C, LI B, LI Y, et al. Ultrasonic Backscatter Difference Measurement of Bone Health in Preterm and Term Newborns [J]. Ultrasound Med Biol, 2020, 46(2): 305-314.
[19] LI Y, XU K, LI Y, et al. Deep learning analysis of ultrasonic guided waves for cortical bone characterization [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 68(4): 935-951.
[20] JIANG C, LI Y, XU K, et al. Full-Matrix Phase Shift Migration Method for Transcranial Ultrasonic Imaging [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2021, 68(1): 72-83.
[21] JIANG C, LI D, XU F, et al. Numerical Evaluation of the Influence of Skull Heterogeneity on Transcranial Ultrasonic Focusing [J]. Front Neurosci, 2020, 14: 317.
[22] LIU C C, DONG R, LI B Y, et al. Ultrasonic backscatter characterization of cancellous bone using a general Nakagami statistical model [J]. Chinese Physics B, 2019, 28(2): 024302.
[23] LI Y, XU K, LI Y, et al. Multichannel crossed convolutional neural network for combined estimation of cortical thickness and bulk velocities using ultrasonic guided waves: A simulation study; proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), 2019 [C]. IEEE.
[24] LI Y, XU K, JIANG C, et al. Cortical bone fracture imaging using velocity model based multistatic synthetic aperture ultrasound; proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), 2019 [C]. IEEE.
[25] LI Y, LI B, LI Y, et al. The Ability of Ultrasonic Backscatter Parametric Imaging to Characterize Bovine Trabecular Bone [J]. Ultrason Imaging, 2019, 41(5): 271-289.
[26] 李云清, 江晨, 李颖, et al. 基于多层声速模型的合成孔径超声皮质骨成像 [J]. 物理学报, 2019, 68(18): 184302-184302.
[27] 第五强强, 李博艺, 李颖, et al. 有监督学习的超声背散射方法在骨质评价中的应用 [J]. 声学学报, 2019, (5): 818-825.
[28] TA D, LI Y, LI B, et al. Cancellous bone characterization using ultrasonic backscatter parametric imaging [J]. The Journal of the Acoustical Society of America, 2018, 144(3): 1822-1822.
[29] LIU C, LI Y, XU F, et al. Ability of Ultrasonic Apparent Backscatter to Reflect Cancellous Bone Densities; proceedings of the 6th International Conference on the Development of Biomedical Engineering in Vietnam (BME6) 6, 2018 [C]. Springer Singapore.
[30] LIU C, LI B, DIWU Q, et al. Relationships of Ultrasonic Backscatter With Bone Densities and Microstructure in Bovine Cancellous Bone [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2018, 65(12): 2311-2321.
[31] LI Y, LIU C, XU F, et al. Microstructure characterization of cancellous bone based on ultrasonic C-scan imaging; proceedings of the 6th International Conference on the Development of Biomedical Engineering in Vietnam (BME6) 6, 2018 [C]. Springer Singapore.
[32] LI Y, LI B Y, XU F, et al. Ultrasonic backscatter measurements at the calcaneus: An in vivo study [J]. Measurement, 2018, 122: 128-134.
[33] LI Y, LI B, JIANG C, et al. Trabecular bone characterization using ultrasonic backscatter parametric imaging; proceedings of the Proceedings of Symposium on Ultrasonic Electronics, 2018 [C].
[34] LI B, LI Y, LIU C, et al. Application of Dynamic Time Warping Technique to Evaluate Microstructures of Cancellous Bones; proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), 2018 [C]. IEEE.
[35] JIANG C, LI D, LI Y, et al. Enhanced transcranial imaging using longitudinal-shearlongitudinal mode conversion with Barker code excitation; proceedings of the Proceedings of Symposium on Ultrasonic Electronics, 2018 [C].
[36] DIWU Q, LI B, LIU Y L F X C, et al. Low-complexity ultrasonic backscattering measurement in cancellous bone evaluation; proceedings of the Proceedings of Symposium on Ultrasonic Electronics, 2018 [C].
[37] CHOU X, XU F, LI Y, et al. Variability in Ultrasound Backscatter Induced by Trabecular Microstructure Deterioration in Cancellous Bone [J]. Biomed Res Int, 2018, 2018: 4786329.
[38] 第五强强, 李博艺, 李颖, 徐峰, et al. 空间频率域超声背散射参量用于骨质状况的评价 [J]. 应用声学, 2018, 37(1): 145-151.
[39] LI Y, LIU D, XU K, et al. Transverse and Oblique Long Bone Fracture Evaluation by Low Order Ultrasonic Guided Waves: A Simulation Study [J]. Biomed Res Int, 2017, 2017: 3083141.
[40] 李颖, 徐峰, 刘成成, et al. Estimating mean trabecular bone spacing based on the combination of Hilbert transform and fundamental frequency estimation [J]. 中国科学基金: 英文版, 2017, (3): 57-71.
[41] LIU C, ZHANG R, LI Y, et al. An Ultrasonic Backscatter Instrument for Cancellous Bone Evaluation in Neonates. Engineering [R]: DOI 10.15302/J-ENG-2015079 Medical Instrumentation—Article Research, 2015.
[42] LIU C C, ZHANG R, LI Y, et al. An Ultrasonic Backscatter Instrument for Cancellous Bone Evaluation in Neonates [J]. Engineering, 2015, 1(3): 336-343.
[43] 他得安, 李颖, 刘成成. 基于希氏变换的超声基频算法估计骨小梁间距 [J]. 数据采集与处理, 2015, 30(2): 319-327.